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Gel’f and bases and the permutation representations of 
the symmetric group associated with the subgroups 
S A ~ X S A ~ X .  .XSAn 

S A Edwards 
Department of Mathematical Physics, University of Adelaide, GPO Box 498, Adelaide, 
South Australia 5001 

Received 22 March 1979, in final form 8 October 1979 

Abstract. A complete decomposition of the space of tensors of rank k over a vector space of 
dimension n into basis vectors transforming canonically under Sk X GL(n) is performed 
using only the properties of the symmetric group. The basis arises in a natural way (via 
Frobenius reciprocity) by identifying each subspace of tensors of a fixed weight A with the 
permutation representation of S k  induced by the subgroup SA = SA X SAz X . . . X SA“. 

1. Introduction 

In spite of the well-known relationship between the irreducible representations of the 
symmetric groups S k  and the general linear groups GL(n), it has been only compara- 
tively rarely that the connection has been used by authors at the level of detail where 
one works with explicit bases. The ‘dual’ nature of the tensor representations of GL(n) 
and Sk enable the representing matrices to be decomposed into block form according to 
the irreducible components of s k  (see, for instance, Weyl 1946). However, when it is 
desired to go further and actually find a complete set of basis vectors corresponding to 
each block, generally speaking the ‘duality’ is allowed to fall into the background: one 
either uses Young tableaux to form projectors (as described, for instance, in the books 
of Weyl (1946), Boerner (1968) or Hammermesh (1962)), or else, as in the method 
of fractional parentage (e.g. Judd 1963) a decomposition is effected under sub- 
groups of GL(n) which bear little relation to the symmetric group. 

A recent paper by Patterson and Harter (1976), developing some earlier results of 
Lezuo (1972), has shown that this need not always be the case. The Gel’fand basis 
of GL(n), defined with the help of the chain 

GL(n) 3 GL(n - 1) 2 .  . GL(1), 

may be pinpointed, it turns out, in tensor representations by projectors derived purely 
from the symmetric group. 

Associated with this is a well-known method for enumerating Gel’fand basis vectors 
using Young tableaux. By a ‘partition A of k into n parts’, we shall mean an ordered 
n-tuple of non-negative integers (A1 ,  . . . , A,,) satisfying ZAi = k.  Let A = ( A l ,  . . . , A,,) 
and p = ( p l ,  . . . , p,,) be two partitions of k into n parts and also let p be ‘dominant’, 
that is, p1 5 p2 5. . .5 pn. By a [GL(n)] Gel’fand pattern we shall mean a triangular 
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1564 S A Edwards 

array of integers {mil; 1 =z i S n, 1 S j S 1 )  satisfying the ‘betweenness conditions’ 

m,, 3 ml-l l  3 myi I. 

Such a pattern labels a basis vector of weight A in the GL(n) irreducible representation 
with highest weight p provided that 

mn, = j =  1 , .  . . , n 

mi+lj-  mii = hicl i = l ,  . . . ,  n - 1  m l l  = A l .  
j =  I / = 1  

It turns out (Boerner 1968, Baird and Biedenharn 1963, Ciftan and Biedenharn 1969) 
that the set of standard Young tableaux of shape p that can be formed using A I  l’s, A 2  
2’s , .  . . , An 11’s is in one-to-one correspondence with the set of Gel’fand patterns 
satisfying both the above conditions. 

Another set whose elements may be enumerated by the same set of standard 
tableaux lies at the heart of the technique we shall present in this paper for decomposing 
spaces of tensors. If p E  is the (permutation) representation of S k  induced by the identity 
representation E of the subgroup 

SA =SA1 x ,  t . x S A n ,  

the multiplicity with which the IR p of S k  occurs in p E  is given by the number of elements 
in the above set (see, for example, Littlewood 1940, Robinson 1961, Coleman 1966). 
We shall identify each space of tensors as a direct sum of such representations and show, 
using results derived in § 2, how a generalisation of the Frobenius reciprocity theorem 
gives rise to an explicit basis for each summand. The explicit basis arises (via 
reciprocity) from the notion, introduced by Elliott el‘ a1 (1953) and studied extensively 
by Kaplan (1962, 1975), of non-standard bases for subduced representations of SA by 
S k .  The non-standard basis vectors corresponding to the identity representation of SA in 
the IR p of s k  are seen to be labelled by Gel’fand patterns. This gives rise to a reduction 
of carrier spaces of the representations p c  and so also of the appropriate tensor spaces. 
The basis vectors resulting from this construction are already labelled by Gel’fand 
patterns and are shown in fact to have the correct transformation properties under 
subgroups of GL(n). The expression finally arrived at for these vectors is quite similar 
to that found by Patterson and Harter ab initio, and the exact relationship between that 
paper and the present one is discussed. 

2. Reciprocal basis sets 

Let G be a finite group and H one of its subgroups, and let p : G -+ End V, A : H -+ End W 
be irreducible representations of G and H, respectively. We can assume that V and W 
are equipped with inner products so that the matrices of each representation are 
unitary. Let Dp = dim V, DA =dim W. 

A subduced representation of H, which we shall write as @ I H ,  is defined by restricting 
p from G to H. This representation is no longer in general irreducible, and to analyse it 
it is convenient to introduce the space M = HomH( W, V) of operators from W into V 
which intertwine with the two representations A and pIH of H. If A EM, A f 0, then 
A W is a subspace of V carrying an irreducible representation of H equivalent to A.  M 
can be equipped with an inner product with the properties that (A,  A )  = 1 .$A unitary 
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and A 1 B 3 A W 1. B W. It is not hard to see this is realised by defining 

(A, B) = Dhl ?'r(A*B). 

The problem of finding an orthogonal labelling scheme for resolving the multiplicity of 
A in ,u is then equivalent to that of finding an orthogonal basis for M. To be more 
explicit, let { w, ;  s = 1, DA}  be an ONB for W and let {Am; a = 1, multiplicity of A in p }  be 
an ONB for M. Then {A,w,}  is an orthonormal basis of MW, which is the component of 
V transforming under ,uIw as A.  

Consider now the representation p* of G induced by the IR A of H. (For the 
fundamentals of induced representations see, for instance, Mackey 1968.) It is defined 
on the space L of functions $ : G + W which satisfy 

cr/(gh) = A(h-')$(gI g E G , h E H .  

The operator representing g E G is given by 

p h ( g ) $ ( g ' )  = cr/W1g'I g'E G 

and the inner product on L is defined in terms of that on W by 

The problem of resolving the multiplicity of ,u in p A  can be formulated in just the same 
way as the problem of A in piH. Let N = HomG( V, L )  be the qpace of G-intertwining 
operators V -+ L. Thus if A E N, A V  is a subspace of L carrying a representation of G 
equivalent to p. Defining an inner product analogously to that on M, we may then 
resolve the multiplicity by selecting an ONB {B,} of N. If { u r ;  r = 1, D,) is an arbitrary 
ONR of V, then {B,ei,} is an ONR of NV, the subspace of L. transforming under p" like p. 

One way of stating the Frobenius reciprocity theorem is to say that the spaces M and 
N have the same dimension. A proof of the theorem is then obtained by constructing an 
antilinear mapping 

T:ILl+N 

A++ TA 

given by 

T , u ( g )  == A*F(g-')v v € V , g E G  

and showing that it is bijective (Gaal 1973, Kirillov 1976, Ol'sanskii 1969). One can in 
fact straightforwardly show (appendix 1) that 

(TA, Ts)= DrDL1(B, A )  

so that the operator ? = (D,Di' )*'*T is antiunitary. Bearing in mind that orthonormal 
bases of M and N define orthonormal labelling schemes for copies of A in V and copies 
of p in L, one sees immediately the labelling problems for subduced and induced 
representations are equivalent: a solution to one problem defines a solution to the 
other. 

The basis-independent definition of T given above disguises the fact that a familiar 
form can be given to the labelling scheme for L corresponding to a given reduction of p. 
The components of any element of L along basis elements of W define functions G -+ C 

&(g) = (M.',, $(gN for any (i~ E L. 
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Imagine now that the bases {Aa}  of M, {U,} of V,  and {w,} of W are given. Then the 
component of xar = TA,u, along w, is simply 

- 1  1/2 (wm x a r ( g ) >  = (DpD, ) (p (g )Aows ,  U,>* 
The components of xar are thus matrix element functions for the representation p 
between appropriately chosen basis elements. The two bases 

and 

can be called ‘reciprocal’. The antiunitarity of f’ implies that if one is orthonormal so is 
the other. 

{ U a s  = AawJ of MW 

{ x a r  = p*/r} of NV 

3. Decomposition of tensor spaces 

3.1. Tensors as permutation representations of S k  

Apermutation representation of a group G is one induced by the identity representation 
of a subgroup H. These arise whenever one considers a space L 2 ( X )  of complex-valued 
functions on X where X is a set on which G acts transitively. A representation rx of G 
is defined on L 2 ( X )  by 

r x ( g > P ( x )  = P ( g - ’ x )  g E  G, x E X  

where we use gx  E X to denote the action of G on X. For a fixed x E X ,  the stabiliser 
subgroup S, of x is the subgroup of G that fixes x .  Provided the action of G on X is 
transitive the representation rx may be identified with the permutation representation 
p‘ of G induced by the identity representation of S,. When G does not act transitively 
on X ,  we must first decompose X into disjoint orbits: let 0, be the set 

0, = {gx; g E G}. 

One can always find a subset T of X which ‘traverses’ X ;  in other words 

x= U 0, 
X E  T 

0, no,, = 4 if x it x ‘ ,  x ,  XI E T 

The representation rx is then a direct sum of permutation representations cor- 
responding to the decomposition 

L 2 ( X ) =  0 L2(0,). 
X E T  

To apply this procedure to the space V?, the space of tensors of rank k over a 
vector space of dimension n, first select an oNB{e1, . . . , e,} of V,. (This also defines a 
chain GL(n) =I GL(n - 1) 1. . .2 GL(l).) For each k, X will be the set N,k of k-tuples 

( i l ,  i z , .  . . , ik) 
where the numbers ij are drawn from the set N, of integers from 1 to n. For each x E X ,  
x = ( i l ,  iz, . . . , i k ) ,  define e, E V? by 

e, = ei, @ erz @ . . . @ et,. 
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The space L 2 ( X )  with inner product adjusted to 

(a, P ) =  c c r o P ( x )  
* E X  

may be identified with VFk by the mapping 

Under this identification the inner products coincide, as do the representations of s k ,  

defined for VFk in the usual way, and for L 2 ( X )  via the action of S k  on X given by 

c + ( i l ,  . . . , i k )  = ( i u - l ( l ) ,  . . . , i u - l ( k ) )  (+E s k .  

(We imagine that S k  is realised as the set of perflutations of the integers (1, . . . , k } . )  We 
shall denote the representation of s k  on VFk by 7 ~ .  

The orbits in X under S k  may be indexed by the set Akof partitions of k into n parts. 
For each partition A = ( A l , .  . . , A , ) ,  let ih be the element of N f :  with A l  l's, A 2  
2's, . . . , A,, n's satisfying i l  s i2  s . . . s i k .  It is easily seen that the set 

{ & ; A  E A 3  

is a transversal of ZV:. The stabiliser of iA  is the subgroup S A  = S A ,  X . . . X of s k .  

Under the identification of L 2 ( X )  with V P k  the summand L*(O,) in the decomposition 
of L 2 ( X )  into invariant subspaces becomes the space of all tensors of weight A with 
respect to G L ( n ) .  We can immediately conclude that the tensor representation of S k  

restricted to this space is equivalent to the representation of s k  induced by the identity 
representation of the subgroup SA : 

3.2. Explicit bases for p'* and VFk 

The permutation representations p '* have been widely studied (Robinson 1961). 
Henceforth we drop the subscript A from e*: A may be understood throughout. The 
multiplicity of the IR p of S k  in p' is given (as mentioned in the introduction) by the 
number of Gel'fand patterns of weight A for the GL(n) IR with highest weight p. We 
shall use the reciprocal bases introduced in § 2 to make this explicit by setting up a 
'natural' orthonormal basis for L, the carrier space of p'. The subduced representation 
reciprocal to p in p E  is E in plIs,. Since E is one-dimensional, a basis for the occurrences 
of E in p is defined (up to a phase) once the multiplicity of E is resolved. To perform 
this resolution, we use a well-studied technique for forming a non-standard basis for 
IR'S of s k .  

Fix A and p, let vi = XClzl Ai and consider the chain of subgroups 

s k = s v n 3 s v n - , 3 . .  .3sy,=sA1 
where S ,  is the subgroup corresponding to permutations of the integers 1 to Y in the 
realisation of s k  as the set of permutations of (1, . . . , k } .  Set m,  = ( p l ,  . . . , p,) and for 
each i < n, choose mi = ( m i l ,  mi2, . . . , mii)  to be a dominant partition of vi into i parts. 
Corresponding to each mi let Wi be the subspace of V (the carrier space of p )  
containing all vectors transforming under S, ,  as the IR m i ;  let We be the subspace of all 
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vectors in V invariant under SA. For any given set {mi; i = 1, . . . , n} the intersection 

will be either one-dimensional or zero-dimensional; it will be one-dimensional if and 
only if the numbers (ml,) satisfy the ‘betweenness conditions’ 

m,, 3 %-I! 2 ml,+l 

of a Gel’fand pattern. This is a consequence of the rule (due to Littlewood (1940)) for 
finding the multiplicity of the IR 

[ w I , .  . . , n ~ ] X [ A t + l >  0 , .  . 9 , O I  

of S ,  x SA,+l contained in the IR 

[mL+l,l, * 2 ml+l,l+~I 
of S , , ,  ,; starting with 

[hi, bIx[Az, 01 
one proceeds inductively, increasing i by steps of one, to produce the betweenness 
conditions. Writing the induction down in tableau form reveals the result clearly. The 
spaces Wm, as m = (w,: j = 1, . I . , i ;  i = 1, . . . , n )  runs over the allowed Gel’fand 
patterns with weight A and m, = p, are one-dimensional, orthogonal if m f mi, and 
span the space We of vectors in V invariant under SA, Choosing a normalised vector 
from each space we form the set { U , }  which is an ONR of We. 

A relationship between this non-standard basis and the standard 
Young/Yamanouchi basis for the whole of the i~ p will be useful for establishing the 
reason why the projectors formed using the latter basis also project onto Gel’fand 
vectors. A Young/Yamanouchi vector may be specified by a pattern y = ( y l I ;  j = 
1, . . . E ;  i = 1, . ~ . . k )  corresponding to a GL(k) Gel’fand pattern of weight [Ik], since 
a standard tableau of weight [ I k ]  is identical to an ordinary standard Young tableau 
(Moshinsky 1966, Louck and Biedenharn 1973). If vg  is a normalised vector cor- 
responding to the Young tableau y ,  it is not hard to see that vY and U, will not be 
orthogonal if and only if yy,  = m, for all i. (The notation y,, indicates the set ( y Y J ;  
j = 1, I . . v, ) ) 

The results of 9 2 now show that an ONB of L reciprocal to the set {U,} is given by the 
set of functions {xmY} with 

X m y k )  = (6),/sA//sI,I-’)”2(p(g)Um, “ y ) .  

For definiteness the basis {U,} referred to in 9 2 has been taken to be the 
Young/Yamanouchl basis indexed by the pattern y ;  the extra factor ISAI(Skl-’ = 
A 1! . . . A, ! / k !  under the square root sign in the normalisation is there to account for the 
unnormalised inner product on L 2 ( X ) ~  

The vectors in V p k  coiresponding to the elements xmy in L are conveniently written 
down using projection operators. Note first that L is the space of complex-valued 
functions on s k  which are constant on cosets of SA.  It is not hard to see, using the 
bijection from S k / S A  to 0, c X, that the function q!~ E L corresponds to the tensor 

IS, I-’ +(g).rr(a)eA = Is, I-’r(+)eA 
G E S k  
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where 
T : L2(sk)+  End( V F k )  

4-  c 4(a)..(fl) 
(T 

is the extension of the representation r from S k  to its group algebra L2(sk)  and eA is the 
image of iA  under the correspondence, i.e. the tensor 

e?' @ e p 2  0.. .@e?". 

When II, is a matrix element function 

$(a) = ~ F l S k l - ' ( k ( ~ ) v n  uq) 

between two normalised vectors v,  and vq, T($) is well known (see, for example, Kaplan 
1975) to be an operator which projects along the vector U, and then 'rotates' to the 
vector uq. When 4 is the normalised matrix element function above we shall use the 
notation PqFr for the projection operator ~ ( 4 ) .  The desired basis of V?" may be then 
written 

- 1  1/2 
Icxm)= ( ~ s k ~ ~ s A l - l ~ ~  pypmeA. 

The notation y X m is used to denote a basis vector of s k  X GL(n). The complete basis is 
obtained by letting p run over all dominant partitions of k into not more than min(k, n )  
non-zero parts, y run over the Young/Yamanouchi basis of each IR p of s k ,  A run over 
the weights occurring in the IR p of GL(n) and m run over the Gel'fand patterns of 
weight A in the IR p. 

To make contact with the vectors PyFy,eA considered by Patterson and Harter 
(1976), and also Kaplan (1975) (y' being a second Young/Yamanouchi vector), we 
return to the observation made earlier that (uy ,  U,) is non-zero if and only if y y ,  = m, for 
all i between 1 and n. Let Q be the projector in V for the SA IR E ;  using the Dirac 
notation l y ) ,  etc, for vy,  etc, we have 

Q = ( S A ( - '  p(u)=C (m)(ml .  
U E S A  m 

Write my for the unique Gel'fand pattern associated with the Young tableau y via A (i.e. 
that satisfying my, = y v ,  for all i between 1 and n) .  Then the uniqueness of my shows that 

b Y I Y ) l 7  =c I(mlyN2 
m 

= (YIQIY) 

= 1SAl-l ( Y l p ( f l ) y ) .  
7 E S A  

The quantity (myiy) ,  which may be calculated using this formula and the known matrix 
elements of the c E S A  in a Young/Yamanouchi basis, gives the relation between the 
vectors B ~ ~ m , e A  and Pr,,eA : 

p;,,eA = (ylm)P~,,,e, 

= ( y  I my)Prcm,eA. 

m 

'Therefore the normalised basis may be written 
-1 1 / 2  p 

Irxm,!) (ISklD,' (y 'JmY,)  Pyy,eA. 
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This is the same as the expression found by Patterson and Harter (1976). The 
discussion above also provides an interpretation of the proportionality between PCy3eA 
and PryrgeA if my’ = my,!, first noted by Goddard (1967). 

The expression involving Pcm may have some advantages over that involving Pry, 
for performing calculations. The function (p ( . r )mly )  is constant on cosets T S A  of SA in 
s k ;  it is actually therefore a function on the space S k / S A  so that the number of distinct 
terms occurring in the expansion of Prm is smaller than for Pry, by a factor 
Al !A2!  . . . A,,!. To calculate ( p ( 7 ) m l y )  for a particular coset representative T ,  one may 
use 

( m I p ( T - l ) y ) =  C ( m I y ’ ~ y ’ b ( 7 ~ ~ ’ ) ~ )  
y ‘ -  m 

where the summation is over those Young/Yamanouchi vectors y‘ such that my,  = m. 
The overlap coefficients (mly’)  are evaluated as already described. An advantage of this 
approach is that one can select the coset representatives T to simplify the summations as 
much as possible (although the full summations over the subgroup SA cannot be 
avoided). 

3.3. Basis properties under GL(n) 

To confirm that the basis { I rxm)}  is in fact the Gel’fand basis arising from the set 
e l , .  . . , e,, let P p i  be the projector onto the IR pi of S p , .  In appendi? 2 we prove that 

In other words, the range of Pp‘ contains the range of PLm if p, and m, are equal, and if 
they are unequal, the ranges are disjoint apart from zero. 

Let V,  and V :  be the subspaces of V,, spanned by the vectors { e l , .  . . , e,}  and 
{ e , + l ,  . . . , e,,}, respectively, and for each ZI E V:@(k-”,) form the subspace W, of VFk 
given by 

W, = V?”z Q v .  

Each W, is invariant under S,,XGL(i) and the representation defined on it by 
restricting rr to this subgroup is equivalent to the natural representation defined on 
VPvi.  Clearly then P m i W ,  carries the representation m, x m, of S ,  X GL(1’). In parti- 
cular, this is true for 

and so FmieA lies in the IR mi of GL(i). Since Prm commutes with n-(GL(n)), the vector 

must also lie in the IR mi of GL(i). Thus the basis { / r x m ) }  has all the properties of a 
Gel’fand basis under the subgroups GL(i) of GL(n) for 1 < i < n. 

3.4. An example 

Finally we illustrate the results obtained by means of the simplest non-trivial example. 
Let p be the dominant partition ( 2 ,  1 , O )  of 3 and let A be the weight (1, 1, 1). There are 
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two Gel'fand patterns corresponding to this pair (w, A ) ,  namely 

2 1 0  2 1 0  
2 0 and 1 1 

corresponding to the tableaux 

and 

Because A consists of repeated ones in this case, Young/Yamanouchi and Gei'fand 
tableaux coincide and the non-standard basis vectors reduce to standard ones. We 
index each basis simply by the numbers 1 and 2 rather than the full patterns above. Also 
we write eijk for ei Q ej Q ek and ( y  x m )  for I&,,,). Then 

1 
Ilx 1) ==(2e1~3+2e213-e132-e321-e31~-e231) 

(1x2)=$(e132-e321+e3lZ-e231) 

12 x 1) = $(e132 - e321 - e312 + e2311 

12x2)==(2e1z3-2ez13+e132+e321-e312-e231). 

412 

1 
J12 

It is not hard to check that these vectors are completely reduced (in exactly the way 
indicated by the appropriate subtableaux) under the chains 

s 3  = sz = s1 
GL(3) = GL(2) = GL(1). 
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Appendix 2. 

P;n,',y"i = 8w>m8P;m. 

Quite generally, let G be a finite group, H a subgroup, p, A IR'S of G and H, respectively, 
and let {U,}, {w,} and {U,} be bases as in 3 2 where t = as. Let L G  be the group algebra 
(over 42) of G and define a (quasi-right-regular) representation .$ of H on LG by 

!3h)* (g )  = $ E  L G .  

Let x,,(g) = (p.(g)u,,  vr) .  Under 6 the set {xlt} as s runs over the basis of W with p, r, (Y 

and A fixed ( t  = as) forms a basis for the IR ,i of H contragradient to A. This may be 
verified in the usual way if one bears in mind that the-operators { p ( h ) ;  h EH} leave 
invariant for each a the set (U,,; s E W}. Therefore if Pt'  is the projector onto i' in the 
representation c, 

Pi'x,, = 8AA'xrl. (A2.1) 

(Written out in full 

where 6,. indicates the vector dual to ws, with respect to ( , ). Equation (A2.1) is now a 
consequence of the orthogonality relations for IR'S of H.) 

Let T nob be an arbitrary representation of G and let P: be the projector onto the 
IR A '  in V,,. By expanding everything we easily verify that 

T(*)P: = 7r(P;'*) * E  I+. 

T(x~oP^,' = r ( X r r ) *  

In particular 

Application of this to the case G = Sk, H = S , ,  ,U = p, A = p, yields the desired result. 
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